Physicochemical study of the sorption of pesticides by wood components

0
Received for publication March 31, 2008. The sorption–desorption and interaction mechanisms of three non-ionic (linuron, alachlor, and metalaxyl) and two ionic (paraquat and dicamba) pesticides by three commercial lignins (hydrophobic macromolecule) and cellulose (hydrophilic macromolecule) as wood components were studied. Wood is a low-cost and environmentally friendly material proposed in recent years to immobilize pesticides in soils. The influence of sorbent and pesticide properties and the identification of the functional groups of the organic molecules involved in sorption were evaluated by a statistical approach and by Fourier transform infrared spectroscopy. The sorption isotherms of non-ionic pesticides by the lignins and cellulose fit the Freundlich model, and those of the ionic pesticides also fit the Langmuir model. The sorption constants of pesticides by cellulose were 62-, 9-, 24-, 119-, and 3-fold lower than those for the sorption by lignins. A predictive model of pesticide sorption indicated that 88.5% of the variability in the sorption coefficient normalized to the organic carbon content could be explained in terms of the variability of the polarity index and the octanol–water partition coefficient of sorbent and sorbate. The greater irreversibility observed for ionic pesticides was attributed to the involvement of simultaneous interaction mechanisms. The results obtained contribute the knowledge of sorption capacity of pesticides by lignin/cellulose, the main components of woods and ubiquitous materials in the environment.

Customer comments

No comments were found for Physicochemical study of the sorption of pesticides by wood components. Be the first to comment!