IWA Publishing

Prediction of hydrological time-series using extreme learning machine


Courtesy of Courtesy of IWA Publishing

Applying feed-forward neural networks has been limited due to the use of conventional gradient-based slow learning algorithms in training and iterative determination of network parameters. This paper demonstrates a method that partly overcomes these problems by using an extreme learning machine (ELM) which predicts the hydrological time-series very quickly. ELMs, also called single-hidden layer feed-forward neural networks (SLFNs), are able to well generalize the performance for extremely complex problems. ELM randomly chooses a single hidden layer and analytically determines the weights to predict the output. The ELM method was applied to predict hydrological flow series for the Tryggevælde Catchment, Denmark and for the Mississippi River at Vicksburg, USA. The results confirmed that ELM's performance was similar or better in terms of root mean square error (RMSE) and normalized root mean square error (NRMSE) compared to ANN and other previously published techniques, namely evolutionary computation based support vector machine (EC-SVM), standard chaotic approach and inverse approach.

Customer comments

No comments were found for Prediction of hydrological time-series using extreme learning machine. Be the first to comment!