Recent carbon and nitrogen accumulation and acidification in soils of two Scots pine ecosystems in Southern Germany

- By:

Courtesy of Springer


Changes of the soil chemical status during the recent 22–30 years at two historically degraded forest sites in southern Germany (Pfaffenwinkel, Pustert) stocked with mature Scots pine (Pinus sylvestris L.) stands were studied by repeated soil inventories conducted in 1974, 1982–1984, 1994, and 2004 on replicated control plots of fertilization experiments, allowing a statistical analysis. Additionally, the nutritional status of the stands at all plots was monitored from 1964 until 2004 by annual or bi-annual analysis of current-year foliage, and stand growth was assessed by repeated stand inventories carried out in 3- to 9-year intervals. For both sites, a statistically significant systematic decrease of the forest floor C/N ratio between 1974 and 2004 from 35.4 to 29.2 (Pfaffenwinkel) and from 36.5 to 23.0 (Pustert) was observed. The soils at both sites also showed a considerable accumulation of organic carbon (210 and 400 kg C ha−1 year−1 for Pfaffenwinkel and Pustert, respectively) and nitrogen (13 and 18 kg N ha−1 year−1). In addition, the mineral topsoil at both sites has acidified considerably, indicated by significantly decreased pH values (Pustert only; mean decrease 0.1 units per decade), base saturation, and base cation stocks. The trend of N enrichment and base cation loss in the soils is mirrored by the trends of stand nutrition at both sites, which are characterized by improved N nutrition and reduced supply with K, Mg (Pustert only), and Ca. The results confirm findings of other studies indicating a recent N eutrophication and acidification of forest soils in Central Europe and southern Scandinavia. Since soils with historic degradation due to earlier non-sustainable forest utilization are widespread in Central Europe, the results obtained on our study sites probably apply for large forested areas, suggesting a significant potential of Central European forests to sequester atmospheric carbon and nitrogen not only in stand biomass, but also in the soil.

Keywords:  Carbon sequestration - N eutrophication - Pinus sylvestris - Soil acidity - Soil monitoring

Customer comments

No comments were found for Recent carbon and nitrogen accumulation and acidification in soils of two Scots pine ecosystems in Southern Germany. Be the first to comment!