Scientists Develop Fast-Growing Sorghum for Biofuel

0

Source: Environment News Service (ENS)

COLLEGE STATION, Texas, October 9, 2007 (ENS) - American cars and trucks may soon be fueled with sorghum. Not used widely as a food grain in the United States, sorghum is one of the five top cereal crops in the world, along with wheat, oats, corn, and barley. It was cultivated in Egypt in ancient times, and Africa still is the largest producer of sorghum today.

Now, energy crop company Ceres, Inc. and the Texas Agricultural Experiment Station of the Texas A&M University system have entered into a joint research and commercial agreement for high biomass sorghum.

These plants are not designed to produce grain, although they do produce it. The real value is that sorghum can be bred to produce vast amounts of biomass, the raw material for cellulosic biofuels made from stems, stalks and leaves.

Presently, sorghum-to-ethanol production uses the grain part of the plant, but the leaves and stalks hold the greatest potential for biofuel production, says Peter Mascia, Ceres vice president of product development.

He says new technologies are making it possible to utilize the carbohydrates found in plant cell walls, called cellulose, to make cellulosic ethanol.

'As these technologies mature, farmers will transition from growing as much grain per acre to producing as much biomass as they can per acre, with as little energy and agronomic inputs as possible. This means new crops and specialized hybrids like these high-biomass sorghum types will be needed,' Mascia said.

Plant scientist Dr. Bill Rooney of the A&M System's Texas Agricultural Experiment Station, TAES, says that sorghum is a near-ideal crop for cellulosic biofuels.

'Sorghum produces high yields, is naturally drought tolerant and can thrive in places that do not support corn and other food crops, he said.

Sorghum also fits into established production systems and is harvested the year it is planted, unlike perennial grasses, so it fits well in a crop mix with perennial species and existing crops, like cotton,' said Rooney.

A pioneer in developing high-biomass sorghum, Rooney's plants can approach 20 feet under favorable conditions, he says, and could produce more than 2,000 gallons of ethanol per acre. That's more than four times the current starch-to-ethanol process.

To accelerate product development, Ceres and the Texas A&M team will work together to expand their breeding efforts by using markers.

Markers allow plant breeders to identify useful traits in seed tissue or when plants are still seedlings. Large numbers of markers provide a roadmap of the sorghum genome, cutting years off development timelines for new products, and making it easier to improve the makeup of the plants to facilitate processing.

'Markers and biotechnology will be crucial for developing sorghum for cellulosic biofuels,' says Rooney.

Mascia said Ceres has Texas-sized expectations for the collaboration. 'When we combine their resources with our high-throughput trait development capabilities, we believe we can double the rate of improvement to biomass yields, while expanding the range of the crop for earlier planting in cooler and drier conditions, especially on so-called marginal or unproductive land,' said Mascia.

He expects that commercial quantities of the initial hybrids will be available in time to meet the requirements of the first cellulosic biorefineries currently being planned.

The Poet company is in the initial stages of developing a commercial cellulosic ethanol plant in Emmetsburg, Iowa, company executives announced last week. The facility is expected to begin operation in 2011. Five other companies are also in the early planning stages of cellulosic ethanol production.

As part of the agreement with TAES signed last week, Ceres will obtain exclusive commercialization rights to TAES's high biomass sorghum hybrids developed in the joint research program.

The TAES program will receive royalties as well as financial and technology support from Ceres. Other aspects of the collaboration were not disclosed.

'This agreement between Ceres and TAES is a great model of how research institutions and the private sector can collaborate to accelerate existing research programs to solve our country's future energy needs,' said Dr. Mark Hussey, director of TAES.

'Having our scientists work jointly on future bioenergy research is a win-win situation for both TAES and Ceres, and will help meet the growing demand for biofuels through the development of cellulosic feedstocks.'

Customer comments

No comments were found for Scientists Develop Fast-Growing Sorghum for Biofuel. Be the first to comment!