QTLs affecting α -Tocotrienol, α -Tocopherol, and total Tocopherol concentrations detected in the ogle/tam o-301 oat mapping population

0

Consumption of oat (Avena sativa L.) products has been credited with reducing the risk of various diseases. This may be due in part to tocopherol content. Studies have shown variation in -tocotrienol, -tocopherol, and total tocopherol levels among oat cultivars, however, the genetic basis of these traits is unknown. The objectives of this study were to examine the genetic mechanisms affecting tocopherol levels in the Ogle1040/TAM O-301 population and to identify quantitative trait loci (QTLs) useful for improving tocopherol levels in oat. The population was grown in Aberdeen and Tetonia, ID, over 4 yr. Alpha-tocotrienol, -tocopherol, and total tocopherol contents were measured in harvested seed. Mean levels of all three tocopherol measurements were higher from the irrigated Aberdeen location than from the nonirrigated Tetonia location. One major and four minor QTLs were detected, which accounted for a majority of the -tocotrienol variation across all locations, while six minor QTLs accounted for a majority of the -tocopherol variation. Only one QTL affecting total tocopherol was detected apart from QTLs affecting -tocotrienol and -tocopherol. Overall, we have identified markers linked to QTLs affecting -tocotrienol and -tocopherol. Since the highest level of both tocopherols in lines of the population were higher than from previously tested cultivars, these QTLs should be useful to increase specific tocopherol levels.

Customer comments

No comments were found for QTLs affecting α -Tocotrienol, α -Tocopherol, and total Tocopherol concentrations detected in the ogle/tam o-301 oat mapping population. Be the first to comment!